A little critique
Jul. 7th, 2010 08:56 pm![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Gender gap persists at highest levels of math and science testing
The authors of this study point out that the achievement gap between boys and girls, when testing gifted seventh-graders, has narrowed dramatically in the last thirty years. When it was studied in the eighties, the number of boys scoring above 800 on the math SAT outnumbered the girls 30 to 1, and that gap has narrowed to about 3 to 1. That happened in the first fifteen years - that is, the 3:1 gap has been consistent since 1995.
So the authors are postulating that the persistence of this 3:1 gap indicates a difference in innate ability between boys and girls in math and scientific reasoning (where the same gap is evident.)
I'm not buying it. Here's why.
First, for every elementary school teacher who is well-versed in constructivist teaching methods as they relate to math, there are a bunch more who aren't. The NCTM (National Council for Teachers of Mathematics) put out the original version of their constructivist curriculum in 1989; I suspect if one were to break down the changes further within that thirty-year time span, it would be the years between 1990 and 1995 that would show the biggest change. But the uptake is, at best, piecemeal. Teachers still teach from textbooks, which short-circuit the problem-solving process by their very nature. Manipulatives still start to disappear from ready availability in classrooms as early as grade four. The higher one goes in math, the more likely it is that manipulatives will disappear almost entirely from the classroom, to be replaced with purely abstract problems and procedural methodology - not because those are the end goal of mathematics instruction but because that's how the teachers were taught, and when they get out of the comfort zone of their pedagogical instruction which is generally aimed at the middle of the expected outcomes for their grade level, they tend to fall back on what they know.
In short, how much of this is the fact that girls learn mathematics differently, and their learning styles for mathematics aren't being supported in their gifted classrooms? My gut instinct says that's a huge part of the reason for the gender gap, but of course I don't have the stats to back it up.
Second, their base data is of twelve-year-old gifted kids. Leaving aside the selection criteria for giftedness (which honestly I question, knowing as I do dozens of people who are very clearly gifted academically but were not identified as such in school) there's the question of socialization. Girls are still socialized away from mathematics, more subtly perhaps than they used to be and less often by teachers, but it still happens. Twelve-year-olds are at the point in their lives when they're really struggling to figure out their place in the world. How many of those gifted kids have already decided that math isn't their thing, due to a couple of years of the poor teaching I mentioned above? How many of them will be talked out of that thinking once it starts to establish itself? Or will it simply be seen as her choosing what she's best at, and hey, there are great careers in language-based subjects, too, so what does it matter if she gives up on the highest levels of math?
In short, socialization has been downplayed as a reason in this study, probably erroneously. The cultural myopia of the data selection is in my favour, here: there is no gender gap in several Asian countries when it comes to mathematics, which makes me question why there should be a 3:1 gender gap here. But the study is done entirely on American students using American tests.
Third is the issue of NCLB. It started in 2001. It short-circuits attempted improvements in instruction because so much of the testing is knowledge-based rather than based in a problem-solving model. Because the testing has such very high stakes attached to it, teachers teach to the test, meaning that improvement in instruction has been stymied in favour of getting the test scores up. You'd think that wouldn't affect gifted education, but school culture affects everything, including the kids who otherwise might not have to worry about it. If the teachers' PD is all about getting test scores up, the teacher of the gifted students effectively is getting no PD at all. His kids are going to do just fine. But he's not then getting trained in the enrichment methods which would really serve everyone much better and are absolutely essential for the highest-functioning kids.
In short, if you want to see problem-solving in students, you have to ask for problem-solving on the tests. The US as a whole is not doing that, so the level of problem-solving isn't improving.
Should I email the authors of the study and point out the problems in their methodology? :)
The authors of this study point out that the achievement gap between boys and girls, when testing gifted seventh-graders, has narrowed dramatically in the last thirty years. When it was studied in the eighties, the number of boys scoring above 800 on the math SAT outnumbered the girls 30 to 1, and that gap has narrowed to about 3 to 1. That happened in the first fifteen years - that is, the 3:1 gap has been consistent since 1995.
So the authors are postulating that the persistence of this 3:1 gap indicates a difference in innate ability between boys and girls in math and scientific reasoning (where the same gap is evident.)
I'm not buying it. Here's why.
First, for every elementary school teacher who is well-versed in constructivist teaching methods as they relate to math, there are a bunch more who aren't. The NCTM (National Council for Teachers of Mathematics) put out the original version of their constructivist curriculum in 1989; I suspect if one were to break down the changes further within that thirty-year time span, it would be the years between 1990 and 1995 that would show the biggest change. But the uptake is, at best, piecemeal. Teachers still teach from textbooks, which short-circuit the problem-solving process by their very nature. Manipulatives still start to disappear from ready availability in classrooms as early as grade four. The higher one goes in math, the more likely it is that manipulatives will disappear almost entirely from the classroom, to be replaced with purely abstract problems and procedural methodology - not because those are the end goal of mathematics instruction but because that's how the teachers were taught, and when they get out of the comfort zone of their pedagogical instruction which is generally aimed at the middle of the expected outcomes for their grade level, they tend to fall back on what they know.
In short, how much of this is the fact that girls learn mathematics differently, and their learning styles for mathematics aren't being supported in their gifted classrooms? My gut instinct says that's a huge part of the reason for the gender gap, but of course I don't have the stats to back it up.
Second, their base data is of twelve-year-old gifted kids. Leaving aside the selection criteria for giftedness (which honestly I question, knowing as I do dozens of people who are very clearly gifted academically but were not identified as such in school) there's the question of socialization. Girls are still socialized away from mathematics, more subtly perhaps than they used to be and less often by teachers, but it still happens. Twelve-year-olds are at the point in their lives when they're really struggling to figure out their place in the world. How many of those gifted kids have already decided that math isn't their thing, due to a couple of years of the poor teaching I mentioned above? How many of them will be talked out of that thinking once it starts to establish itself? Or will it simply be seen as her choosing what she's best at, and hey, there are great careers in language-based subjects, too, so what does it matter if she gives up on the highest levels of math?
In short, socialization has been downplayed as a reason in this study, probably erroneously. The cultural myopia of the data selection is in my favour, here: there is no gender gap in several Asian countries when it comes to mathematics, which makes me question why there should be a 3:1 gender gap here. But the study is done entirely on American students using American tests.
Third is the issue of NCLB. It started in 2001. It short-circuits attempted improvements in instruction because so much of the testing is knowledge-based rather than based in a problem-solving model. Because the testing has such very high stakes attached to it, teachers teach to the test, meaning that improvement in instruction has been stymied in favour of getting the test scores up. You'd think that wouldn't affect gifted education, but school culture affects everything, including the kids who otherwise might not have to worry about it. If the teachers' PD is all about getting test scores up, the teacher of the gifted students effectively is getting no PD at all. His kids are going to do just fine. But he's not then getting trained in the enrichment methods which would really serve everyone much better and are absolutely essential for the highest-functioning kids.
In short, if you want to see problem-solving in students, you have to ask for problem-solving on the tests. The US as a whole is not doing that, so the level of problem-solving isn't improving.
Should I email the authors of the study and point out the problems in their methodology? :)